Our mission is to *Keep Alaska Moving* through service and infrastructure.
1964 Good Friday Earthquake Mw 9.2
Inspection Response

• 3 Inspection teams flew up from Juneau immediately following the event, another team arrived a few days later

• 25% of state bridge inventory inspected in 5 days

• Bridges marked after inspection in case of second event and to prevent overlap
Inspection Boundaries

GLENN HIGHWAY - 62
PARKS HIGHWAY, SOUTH - 69
SEWARD HIGHWAY, NORTH - 50
SEWARD HIGHWAY, SOUTH - 51
MATSU BOROUGH - 61
ANCHORAGE - 81

BRIDGES TO INSPECT - 243

20% PGA
Numerous reports of damage came from Eagle River in the hours after the earthquake.
Eagle River Bridges

- Glenn Hwy Southbound
- Glenn Hwy Northbound
- ER Loop, PED Tunnel
- ER Loop, Briggs Bridge
Glenn Hwy-Eagle River NB #2303

- Approach roadway “cracking”
Glenn Hwy-Eagle River River NB #2303

- Settlement adjacent to wingwalls
Glenn Hwy-Eagle River NB #2303

- Settlement adjacent to wingwalls

16 Inches
Glenn Hwy-Eagle River River NB #2303

- Slope movement in front of abutment
Glenn Hwy-Eagle River NB #2303

- Shear key cracking (expected damage)
• South Abutment
Glenn Hwy-Eagle River SB #1341

- South Abutment Bearings
Glenn Hwy-Eagle River SB #1341

- South Abutment Movement
Eagle River Loop-Briggs Bridge #1739

• South Abutment Movement

~4% Grade
Eagle River Loop-Briggs Bridge #1739

- South Abutment Joint
Eagle River Loop-Briggs Bridge #1739

- South Abutment Joint
Eagle River Loop-ER Ped Tunnel #7020

- June 2018
Eagle River Loop-ER Ped Tunnel #7020

- November 2018
Eagle River Loop-ER Ped Tunnel #7020
Muldoon Road-Muldoon OC #2308

- Cracks and spalling at shear keys
West Dowling-Dowling OC #2273

- Cracks and spalls at shear keys
De Armoun Rd-De Armoun OC #1391

- Spalled shear keys and cracked abutment cap beams
Why didn’t we see this kind of damage?

Northridge 1994 M_w 6.7

Loma Prieta 1989 M_w 6.9
Average Displacement Spectra for Anchorage EQ

Majority of AKDOT’s multi-span bridges have periods between 1.5-3.5 seconds.
Other Contributing Factors

- Most structures behaved essentially elastically
 - Actual stiffness > design stiffness
 - Actual structure period < design period
 - Smaller periods associated with smaller displacements

- Many newer bridges in the Anchorage area driven by population growth -> fewer seismically vulnerable bridges
Past Seismic Research Sponsored by DOT&PF

- Seismic Performance of Reinforced Concrete Filled Steel Tubes in Soil

 2016-North Carolina State University

- Strain Limits for Concrete Filled Steel Tubes in AASHTO Seismic Provisions

 2013-North Carolina State University

- Frozen Soil Lateral Resistance for the Seismic Design of Highway Bridge Foundations

 2012-University of Alaska Anchorage

- Seismic Performance and Design of Bridge Foundations in Liquefiable Ground with a Frozen Crust

 2012-University of Alaska Anchorage

- Ductility of Welded Steel Column to Steel Cap Beam Connections

 2010-North Carolina State University

- Full-Scale Test of the Alaska Cast-In-Place Steel Shell Three Column Bridge Bent

 1999-University of California San Diego
Conclusions

• Earthquake was fairly deep and didn’t produce large displacements for most bridge periods

• Damage observed was largely related to soil failures. (roadway approaches closed bridges, not structural issues)

• ~20 bridges require some sort of structural repair, work scheduled for 2020

• This was not the design level earthquake

• Just because this earthquake didn’t cause significant structural damage, doesn’t mean the next one won’t!
Seismic Performance of Reinforced Concrete Filled Steel Tubes Lab Testing

Questions?

Nick Murray PE SE
AK DOT&PF